

Smart Work Design –

Improving Ergonomics and Efficiency of Assembly Processes by Virtual Production Planning

Dr. Lars Fritzsche, imk automotive GmbH @ Montagesysteme 2014, Bad Nauheim, 18.02.2014

I	imk İnnovations – Methods – Koncepts
II	Motivation for Virtual Planning
ш	ema Software for Human Work Planning
IV	Conclusions

Worldwide dedicated to the success of our customers. **European Customers** DAIMLER valmet automotive smart $\overline{\mathbf{m}}$ F Αυδι DAIMLER KAMAZ imk automotive GmbH HeiterBlick 0 SOLARIS imk automotive, Inc. P 精印集团 **Cindi** (a) Autoliv FARMINGTONS TAKATA AUTOMOTIVE PRETTL KENERSYS smarl KALYANI CLAA5 starragheckert **GrTrim** Automotive industry, mechanical engineering, industrial commodities, KUKA renewable energies, information systems, and aerospace industry. SALZGITTER peguform

www.imk-automotive.de

Cross-industry engineering services and consulting.

Engir	neering		Consulting		
Product Development Ronny Göpfert	Production Planning Carsten Otto	Information Technology Dr. Jens Trepte	ErgonomicsTechnical ConsultingDr. Lars FritzscheIngolf Grüßner		
 Mechatronic Systems Structural Components 	 Assembly Bodyshop Logistics 	 Software Development Support and Service 	 Ergonomic Work Design Qualification and Training Product and Production Optimization 		

Strategic Development	
Dr. Wolfgang Leidholdt	

Т	imk İnnovations – Methods – Koncepts	
II	Motivation for Virtual Planning	
ш	। ema& Software for Human Work Planning	
IV	Conclusions	

Digital production planning tools facilitate human-centered work design.

Costs

 Chances for redesign are best in an early stage of development due to strongly increasing costs after product design freeze.

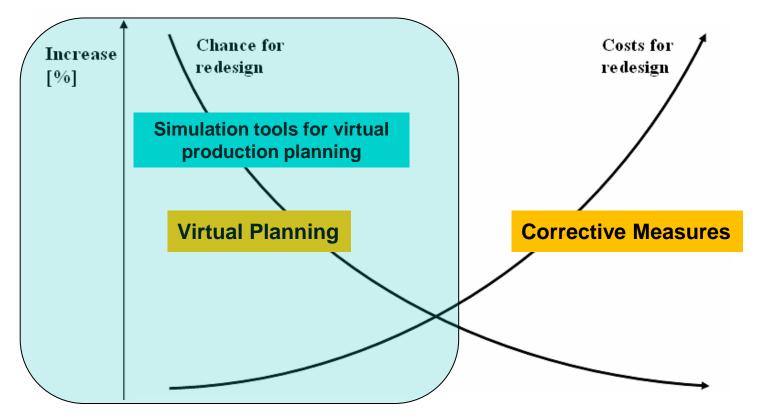
Efficiency

 <u>Digital tools enable efficient testing of alternative planning and design</u> scenarios without physical mock-ups and any risks for operators.

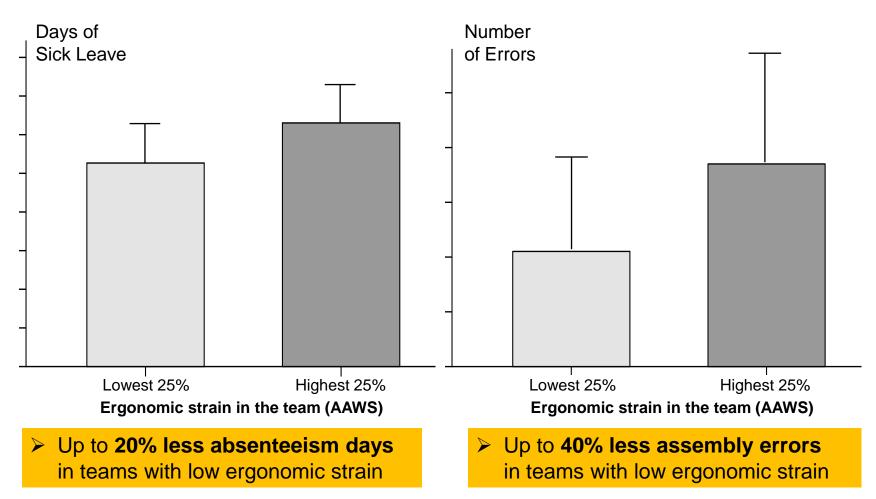
Understanding

 <u>3D visualization helps to create a common understanding</u> and thereby supports collaboration between design, planning, production, safety, etc.

Availability


Today, <u>digital data is readily available</u> in most companies' PLM systems.

Motivation for Virtual Planning



"Lessons Learned" What parts and processes are critical in Productivity and Ergonomics?

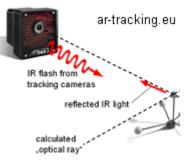
Study of 56 teams (623 persons) at Mercedes-Benz assembly line. (Fritzsche, 2010)

In the past, humans were merely "background actors" in the digital factory.

Dr. L. Fritzsche, February 2014



Requirements for human simulations were NOT fulfilled:


- Realistic movements in 3D
- Human-machine interactions
- Reasonable effort for gernerating simulations
- Analysis of production time and ergonomics based on industry standards

Tools for Human Work Simulation

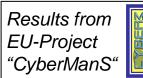
Motion Capturing in Virtual / Mixed Reality

Optical tracking

Head Mounted Display

Real and augmented objects

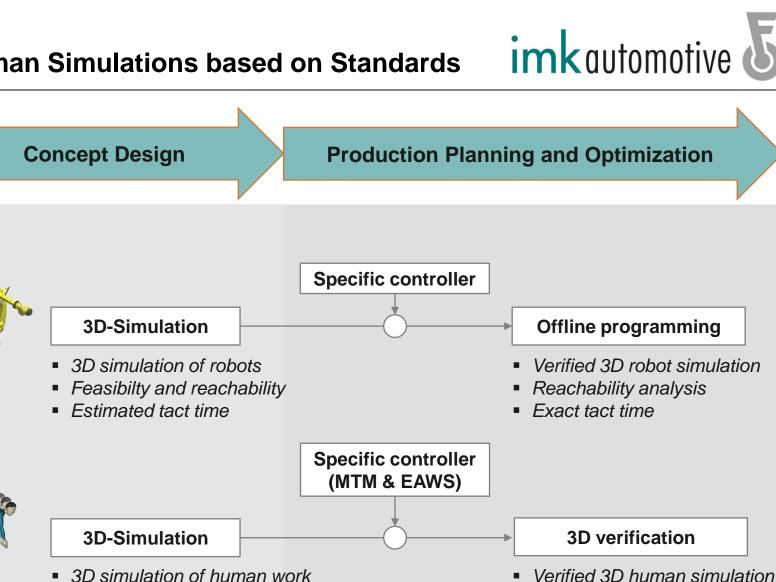
Motion Capturing Suit


Benefits:

imk automotive

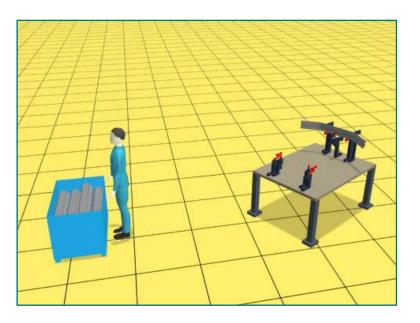
- Recordings of realistic human motions in action
- Physical feedback, natural collision avoidance

Drawbacks:


- High effort for scenario preparation and alternation
- Individual data is not objective and reliable
 → results lack validity

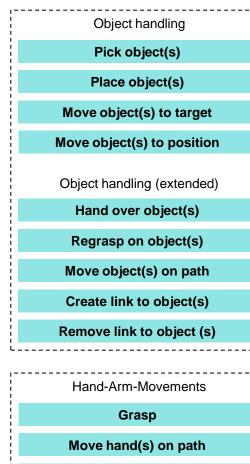
T	imk İnnovations – Methods – Koncepts
II	Motivation for Virtual Planning
III	ema& Software for Human Work Planning
IV	Conclusions

Human Simulations based on Standards

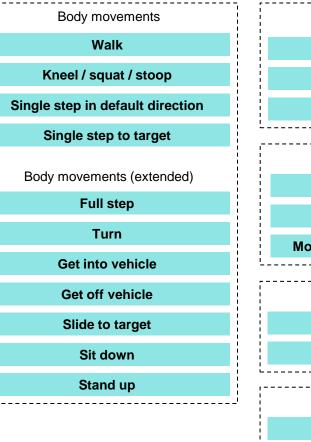

- Ergonomic risk estimation
- Estimated tact time

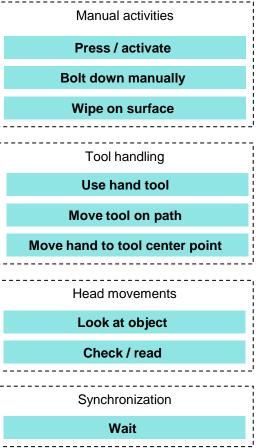
- EAWS ergonomic analysis
- MTM time analysis

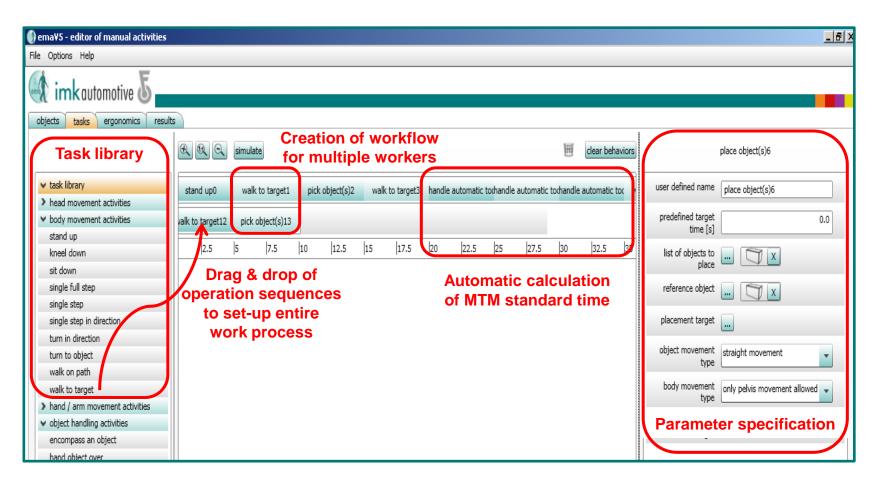
ema uses a standard process language and a library of predefined operations:

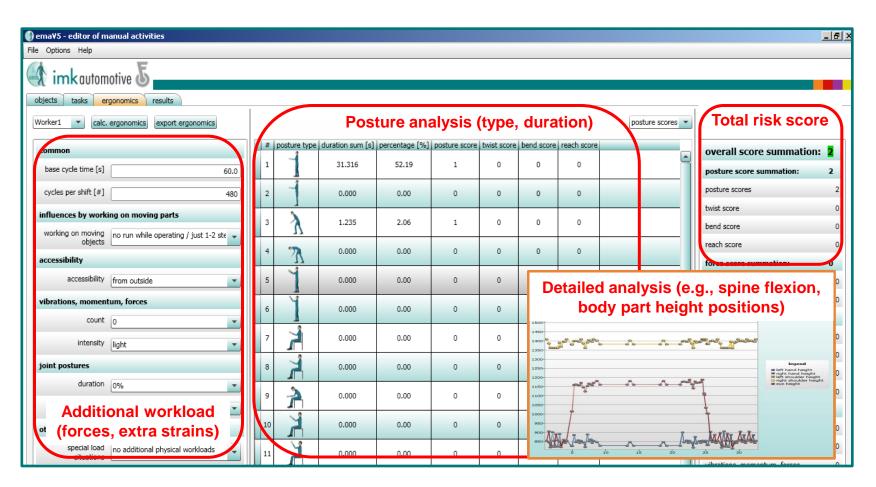

- get and place object
- use automatic tool
- ingress / egress car
- etc.

imkautomotive


Not: step(s) forward → stand upright → bend → hand to object → pick → object to body → step(s) sideward → turn → step(s) forward → bend → object to target → release → hand back
Instead: take part from box and place into device (= object reference)





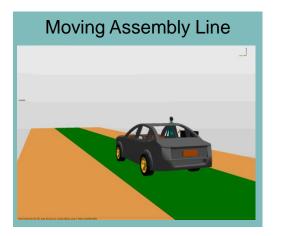


The task library is continuously growing integrating more predefined operations and movements.

 Process definition by drag-and-drop using predefined operation sequences, supplemented by the specification of task parameters (target location, etc.)

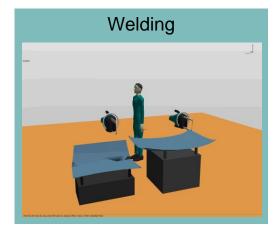
imk automotive (

 Semi-automatic ergonomic evaluation based on standardized EAWS tool (Ergonomic Assessment Worksheet V1.3.3 © IAD and AMI 2012)


imk automotive

Worker02 - Ctra		50th	percentile, mak	e, German, 0.	0kg, age: 35		
cycle time	55 s		≠ type	duration [s]	time relevant	informations	added value [%]
-,	55 5		1 wait	1.557	>		0
working time [s]	14.45		2 walk	0.628	~	-> overall walkpath [m]: 0.775	0
working time (clean) [s]	14.45		3 pick object(s)	1.030		-> hand move distance [m]: 0.551 -> load in right hand [kg]: 2.000 -> type of picking: not defined	0
cycle balance time [s]	40.55		4 walk	3.999	>	-> overall walkpath [m]: 4.127 -> load in right hand [kg]: 2.000	0
duration of value adding tasks [s]	7.23		5 handle tool	ol 3.602	~	-> load in right hand [kg]: 2.000 -> hand move distance [m]: 0.696 -> object move distance [m]: 0.040	100
overall walkpath [m]	4.9					-> type of tool movement: automatic -> cycles [#]: 1	
walking duration [s]	4.44				~	-> load in right hand [kg]: 2.000 -> hand move distance [m]: 0.964	
duration of standing postures [s]	6.4		6 handle tool	3.631		 -> object move distance [m]: 0.040 -> type of tool movement: automatic -> cycles [#]: 1 	100
duration of squatting postures [s]	3.6				ade	ded value	
duration of sitting postures [s]	0						
duration of kneeling postures [s]	0						
duration of lying postures [s]	0					legend cycle balance tin value-adding non value-addin	

Analysis of value-added time, waiting, walk ways, workload balance, etc.



emab may be used for various applications in different industries.

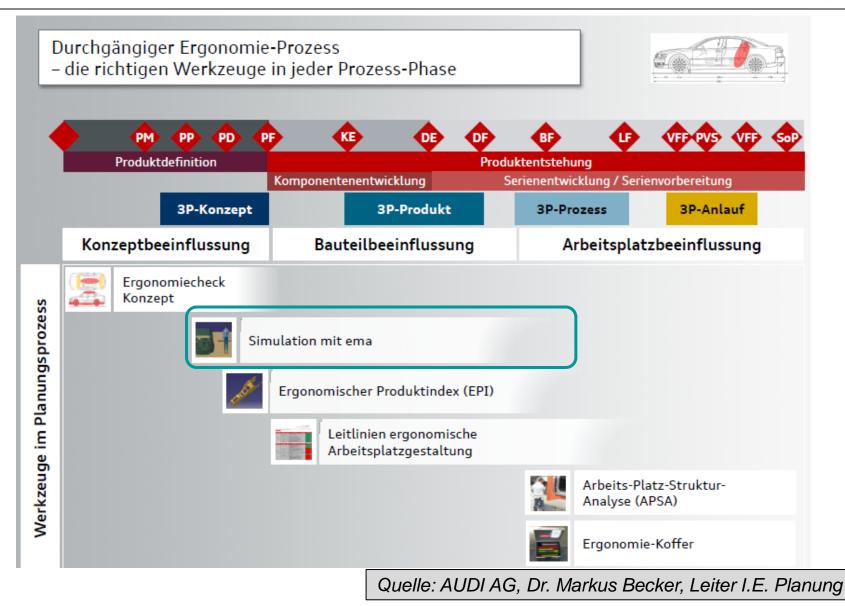
Interior/Footwell Assembly

Car Ingress / Egress

Dr. L. Fritzsche, February 2014

emation analysis of walkways with moving assembly line.

🔄 ema - Editor menschlicher Arbeit (ema_DEVELOPMENT) - U:\08_Wissensbasis_imk\EMA_Wissensbasis\Methodik\ema-Dynamic\Test.9\BewKarosse_Final.ema					
Datei Bearbeiten Optionen Hilfe DEBUG		1			
Simulations-Projekt Objekte Verhalten Ergonomie (EAWS) Ergon	omie (APSA) Ergonomie (EAWS Digital) Spaghetti Diagramm Ergebnisse				
Worker 🔽 🔀					
✓ Berichtsparameter					
Sichtbarkeit im Bericht 🔟					
Farbe im Bericht					
Radius für Positions- Zusammenfassung					
[mm]					
Arbeitspositionen					
# sichtbar Dauer [5] Anteil [%] Verrichtungen					
Pfade # sichtbar Dauer [s] Länge [m] Typ Verrichtungen	Worker imk_Fahrzeug Materialbereitstellung				
<externer modus=""></externer>					
Kameras					
	T MA				
Wiedergabe					
Wiedergabe: x 1 0 [5]					


Project Start Concept Decision Design Freeze & 1st Prototype Production Trials Start of Production ΡM KE DF BF VFF SOP **Concept Design Production Trials & Ramp-Up Development & Production Planning** Ergonomic **Milestones Concept Workshops Process Workshops CIP-Workshop Product Workshops** Production Trials Qualification Planning premises Product optimization Process Product concept Line balancing Training of Feasibility/Buildability Standard structure Line balancing Layout design optimization standard Layout design eHPV targets eHPV analysis Logistics Productivity process Investment targets Time spread Logistics Investigation of new concepts Verification / Detailing of the Qualification of new Simulation of and technologies: production process: work procedure **CIP**-measures F-time planning Training of Layout Feasibility Estimated production time Line balancing standard work Walkwavs Estimated ergonomics risks Layout design process using F-time Ergonomics assessment Ergonomics ema-simulation

ema& supports the Product Development Process from Concept until EOP!

imk automotive

emation Product Development Process

imk automotive 5

Dr. L. Fritzsche, February 2014

emation helps to avoid mistakes in planning and to reduce costs for redesign.

- Easy verification of planning results in 3D environment
- Quick alternation and testing of scenario options
- ✓ Uses MTM standards for time estimation
- Uses EAWS for ergonomic risk assessment (and possibly any other standard method like OWAS, etc.)
- Compatible with all common data formats (.cgr, .jt, .dae)

Page 23

Dr. L. Fritzsche, February 2014

T	imk İnnovations – Methods – Koncepts	
Ш	Motivation for Virtual Planning	
ш	ema Software for Human Work Planning	
IV	Conclusions	

Designing efficient assembly systems by using virtual production planning.

- Virtual production planning saves costs for redesign and late correction.
- The complex human workforce needs to be considered proactively.
- emas enables easy simulation that leads to objective results.

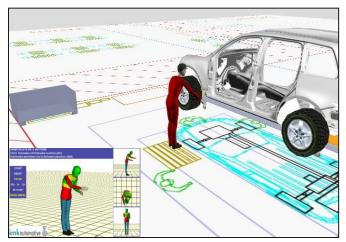
→ However, in many companies a change of culture is needed to respect and understand the requirements of (manual) assembly systems early in product development – digital human simulations may be the key!

Experts for designing ergonomic and efficient production processes.

- Ergonomic risk assessment: using standard methods (EAWS, LMM, etc.)
- Proactive ergonomics:

ergonomic analysis and improvement of the design of products, processes, and equipment

Ergonomic optimization:


ergonomic analysis and improvement of work conditions in series production

Trainings in ergonomics:

customized trainings in basic knowledge, standard methods, and ergonomic behavior

Pilot applications of emas

Customers and Partners

www.imk-automotive.de

Contact Data:

Dr. Lars Fritzsche Division Manager Ergonomics

Mobil: +49 (0)162 250 03 47 lars.fritzsche@imk-automotive.de www.imk-automotive.de